"CASE STUDY PREMARKET SAFETY ASSESSMENT - GM MUSTURD"

Dr.B. Dinesh Kumar, FNAMS, FAPASc, FIPS Scientist 'F' (Deputy Director Sr.Gr.) **HOD Drug Division & Coordinator - PCT**

Centre for Advanced Research for Preclinical Toxicology (PCT)

National Institute of Nutrition (ICMR), HYDERABAD

Email: nindineshpct@gmail.com

DRUG TOXICOLOGY RESEARCH CENTER

PATHOLOGY

PCT Team Pharmacologist Pathologist Veterinary Pathologist Biochemist

Trained Technical Staff

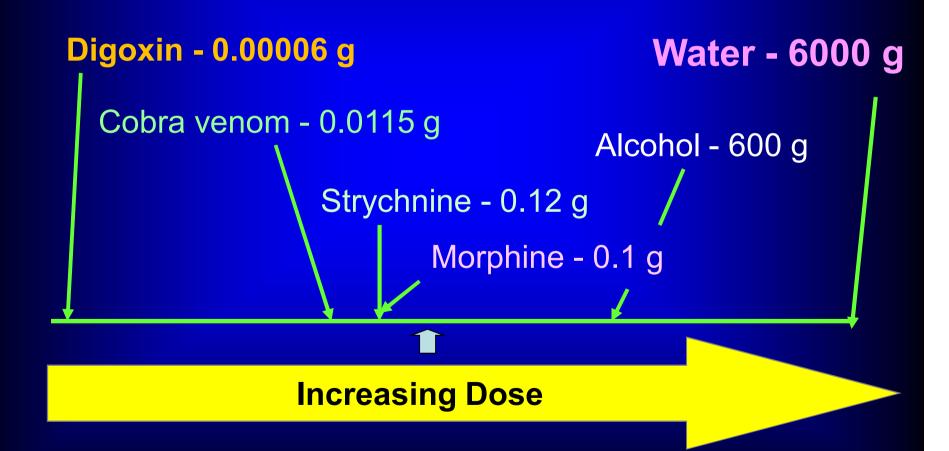
NATIONAL CENTRE FOR LABORATORY ANIMAL SCIENCES

Team Work

IMMUNOLOGY

STATISTICS

PCT Team


Geneticist **Microbiologist Animal Scientists** Statistician

Trained Technical Staff

CAN SAFETY BE PROVEN?

- It is impossible to prove that something is safe.
- The best that can be demonstrated is the absence of evidence of the production of harm
- Present and future safety can only be judged on the basis of past experience, an absence of evidence of harm is the only evidence we can ever expect for the absence of harm.

"ALL THINGS ARE TOXIC, IT IS ONLY A MATTER OF EXPOSURE LEVEL / DOSE"

Pre clinical safety evaluation and Compositional analysis of key components in Leaves & Seeds of two events of transgenic Brassica juncea

Study Centre

Center For Advanced Research For Pre - Clinical Toxicology National Institute Of Nutrition (ICMR) Hyderabad, INDIA, 500007 Study No: 02/12

Sponsor

Centre for Genetic Manipulation of Crop Plants
University of Delhi, South Campus
Benito Juarez Road, New Delhi-110021
Tel: 011-24115203

Study Director

: Dr. B. Dinesh Kumar

Study Investigators

: Dr. P. Uday Kumar, Dr. R. Hemalatha Dr. S. Vasanthi,

Dr.N.Hari Shankar, Dr. M.V. Surekha

Collaborators Study Coordinators

: Prof. Deepak Pental, Dr. Vibha Gupta,

: DR. B. Sesikeran (till 2012), Dr. Vibha Ahuja

Study Approvals:

RCGM No. BT/BS/17/30/97-PID

IBSC No. FDTRC/BIO-Safety/12

IAEC No. P49/NCLAS/IAEC/2011/12/28

GENETICALLY MODIFIEDCROPS - SCREENED at PCT NIN

S.No	Name of the crop	Trans Gene/Protein	Expression in edible portion
1	Bt.Brinjal	cry1Fa1 /Cry1Fa1 (event 142)	0.0004gm/% 4μg (400 μg)
2	GM Mustard	<i>bar</i> /Bar	0.0094gm/% 94 μg (9400 μg)
		barstar / Barstar	X
		barnase/Barnase	X
3	Bt. Okra	cry1Ac/Cry1Ac	0.0035gm/% 35 μg (3500 μg)
4	Bt. Cotton	cry1Ac /Cry1Ac (event -1)	0.00040/% 40.47μg (4047μg)
		cry1EC /Cry1EC (event -24)	0.0015/% 15.2μg (1520μg)
5	Bt. Rice	cry1Ab/Cry1Ab	0.00028gm/% 2.8 μg (280 μg)

TEST DETAILS (Brassica)

Volume	Test Details	Objective				
	1. Allergencity studies	S				
I	Bioinformatics Analysis of three proteins (Bar, Barnase and Barstar)	Assessment of potential allergenic cross reactivity to known allergens				
II	Pepsin Digestibility Assay of the Bar, Barnase and Barstar proteins	To assess digestibility of test proteins in pepsin in SGF at pH 1.2				
Ш	Thermal Stability of the Bar, Barnase and Barstar proteins	To assess thermal stability of test proteins to varying temperatures and assess functional activity.				
	2. Acute Toxicity test					
IV	Acute Oral Toxicity Of Bar Protein	Safety Accessment of preteins at				
V	Acute Oral Toxicity Of Barstar Protein	Safety Assessment of proteins at 1000mg/kg which is more than 10 folds				
VI	Acute Oral Toxicity Of Barnase Protein	higher than the intended expression levels				
	3. Sub-Chronic Study					
VII	Sub-chronic toxicity in Leaves from two events (Varuna Barnase (VB)-Transgenic(T), Varuna - Non Transgenic (NT), EH2 Barstar (EH2B)-T, EH2 - NT, DMH-11 (Transgenic hybrid of VB & EH2B)	Safety Assessment of Leaves / Seeds of				
VIII	Sub-chronic toxicity in Seeds from two events (Varuna Barnase (VB)-Transgenic(T), Varuna - Non Transgenic (NT), EH2 Barstar (EH2B)-T, EH2 - NT, DMH-11 (Transgenic hybrid of VB & EH2B)	transgenic <i>Brassica juncea</i> lines compared to their non–transgenic counterparts in rats				
	4. Compositional analysis					
IX	Compositional analysis of key component in Leaves, Seeds, of two events - Volume IX.	Proximate Composition, Minerals Composition, Vitamins Composition, Secondary Metabolites and Phyto Sterols, Amino acid Composition,				
		Fatty Acid Composition				

STUDY RATIONALE

How much should we consume?

The Expert Committee of the Indian Council of Medical Research, taking into consideration the nutrient requirements, has recommended that every individual should consume at least 300 g of vegetables (GLV: 50 g; Other vegetables: 200 g; Roots & Tubers: 50 g) in a day. In addition, fresh fruits (100 g), should be consumed regularly. Since requirements of iron and folic acid are higher for pregnant women they should consume 100g of leafy vegetables daily. High calone vegetables and fruits to be restricted for over weight/ obese subjects.

Source:

Dietary guidelines for Indians Published by NIN based on data of National Nutrition Monitoring Bureau (NNMB)

BALANCED DIET FOR ADULT MAN (SEDENTARY) PATSIOILS SUGAR 15 g X 5** 15 g X 5** 15 g X 5** 15 g X 5** 16 g X 5** 17 g X 5** 18 g X 5** 19 g X 1** 100 g

METHODOLOGY

PRODUCT PROFILE & SOURCE

S.no	Purified protein	Quantity received	Concentration(mg/ml)	Source
1	Bar Protein	425mg	10	Supplied by
2	Barnase Protein	408mg & 260mg	10	M/S Premas Biotech Pvt. Ltd
3	Barstar	722.5mg	17	r va Eta

S.no	Lyophilized powder & Fresh Leaf	Quantity received	Seed	Quantity received	<u>Source</u>	
1	Varuna (NT)	904g + 6kg	Varuna (NT)	555g		
2	EH-2(NT)	770g + 6kg	EH-2(NT)	555g	Navagaon , Kumher	
3	Varuna Barnase (T)	770g + 6kg	Varuna Barnase (T)	555g	& Sri ganganag ar around	
4	EH-2 Barstar (T)	750g + 6kg	EH-2 Barstar (T)	555g	200 kms from Delhi.	
5	DMH-11 (T)	792g + 6kg	DMH-11(T)	555g		
(NT- N	(NT- Non Transgenic),(T- Transgenic)					

Compositional Analysis of GM Food Crops

Methodology

 The Leaf samples of each transgenic (3), non –transgenic (2) and Zonal check

Randomly collected from three different places within each area*.

- Homogenization of samples to prepare 1kg aliquot in banana leaves.
- Transported to Study Centre by Airlines in Thermacol box.

* Centre space of lamina
Outer space of lamina
Different sizes of leaves

Navagaon

Kumher

Sri Ganganagar

Compositional Analysis

Composition	Composition Profile	Method
	Crude Protein	AOAC 984.13
	Crude Fat	AOAC 2003.06
Proximates	Ash	AOAC 942.05
	Carbohydrate	AOAC 986.05
	Sugars, Total	AOAC 974.06
	Acid detergent Fibre	AOAC 973.18
Fibre	Neutral detergent Fibre	AOAC 2002.04
	Total Dietary Fibre	AOAC 985.29
	Phytic acid	AOAC 986.11
	Sinapine	Internal Method-2
Cocondom, Motobolitos	Cholesterol,	
Secondary Metabolites	Brassicasterol,	
and Phytosterols	Campesterol,	AOAC 994.10
	Stigmasterol, Beta	
	sitosterol, Total sterols	

Compositional Analysis of GM Food Crops

Comp	osition	Composition Profile	Method
		Ca (Calcium)	
		Fe (Iron)	
		Mg (Magnesium)	
		P (Phosphorous)	
	Minorala	K (Potassium)	ACAC 095 04
	Minerals	Na (Sodium)	AOAC 985.01
		Zn (Zinc)	
		Cu (Copper)	
		Mn (Manganese)	
		Se (Selenium)	
Micro	Vitamins	B1 (Thiamine)	
•		B2 (Ribofavin)	Internal Method-1
&		B3 (Niacin)	
Macro		B5 (Pantothenic acid)	
Nutrients		B6 (Pyridoxine)	
		B9 (Folic Acid)	
		Lutein	AOAC 2005.07
		Beta-carotene	AOAC 2005.07
		Vitamin E (alpha-tocopherol)	AOAC 2012.09
		Vitamin K (Phylloquinone)	AOAC 999.15
		Vitamin C (Ascorbic acid)	AOAC 985.33
	Amino Acids	Asp, Thr, Ser, Glu, Pro, Gly, Ala, Cys, Val, met, lle,	Waters AMQ derivatization
	Amino Acius	Leu, Tyr, Phe, His, Lys,Art, Trp	Waters Aiwig derivatization
	Fatty acids	Saturated, Unsaturated (Mon and Poly), Trans fat	AOAC 996.06
	Fatty acids composition	Saturated, Unsaturated (Mon and Poly), Trans fat	AOAC 996.06

STUDY RATIONALE & EXPOSURE LEVEL

GM mustard - three proteins

Bar - Expression level in leaves - 94μg/g.

Barnase - Expression level in leaves - 94μg/g.

Barstar - Expression level in leaves Expression levels

S.n	Crop	Human Intake	Expression of protein (fresh)				
0		(Rat intake)	Per gm (100gm)	intended exposure			
				Human	Rat	Mice	
1	GM Mustard(100 g /Adult	94 μg (9400 μg)	9.4mg	0.17mg	0.02mg	
	Bar, barnase &	rnase & (1.8gm/200g rat)					
	barstar)						

- 1. Adult consumption: 100gm/day (Max. Daily Dietary Intake-NNMB)
- 2. Conversion factor (F): Human(60kg) to Rat(200gm)- 0.018
- 3. Rat(200gm)= 1.8gm (human consumption 100gmx F (0.018) =1.8)
- 4. Conversion factor (F): Human(60kg) to Mice(20gm)- 0.0026
- 5. Mice (20gm)=0.26gm (human consumption 100gmx F (0.0026) = 0.26)

Rationale: Mice - Oral exposure with - 1000mg/kg of Bar, Barnase & 1700mg/kg of Barstar proteins

Acute Toxicity study (14days) Recombinant Bar, Barstar and Barnase proteins

Study Design: SA Mice, 4-6 weeks & 18-20 gms

S.n	Test compound	No. of	Dosage schedule (oral route)		Study
0		animals	mg/2ml	Duration	parameters
1	Vehicle control (buffer)	16 (8 ♂ + 8 ♀)	Solubilized protein buffer	0.5 ml x 4	Activity
2	Bar protein	16 (8 ♂ + 8♀)	20mg*	times a	and
3	Barstar protein	16 (8 ♂ + 8 ♀)	34 mg*	day	lethality
4	Barnase protein	12 (6 ♂ + 6 ♀)	20mg*		

Maximum of 2 ml in 24 hrs (0.5 ml every 6 hours).

Rationale:

- 1. Bar protein expression level is 94μg/gm
- 2. Human consumption = 100gm/60kg man (9.4mg Bar protein /100gm of leaves)
- 3. Maximum Bar & Barnase protein administered was 1000mg/kg based on the maximum solubility that could be achieved.
- 4. Maximum Barstar protein administered was 1700mg/kg based on the maximum solubility that could be achieved.

Sub chronic Toxicity Study in Rats

Rationale:

Consumption	Leaf/day	Seed/day		
Human DDI ¹	100gm	0.53gm		
Rat ²	100 X 0.018 = fresh weight - 1.8gm	10mg (0.0095gm)		
Wet Weight of Test material (WWT)	1.8gm			
Lyophilized Powder (LP) of WWT*	0.27gm (without 85% moisture)			
Actual fed (powdered)@	0.4gm	20mg		
Bar protein expression ^{\$,3}	94μg/gm			
Total Bar Protein consumption	0.17mg in 0.4gm of LP			
* Lyophilized powder prepared by reduction of 85% moisture with Fresh leaves weight				
@ To overcome the losses Test material fed to Rat is 0.4gm lyophilized leaf and 20mg of seed				
\$ Maximum expression levels as per the 94μg/gm,				

Rationale for Animal Selection:

Rat's physiology - similar to human being; one-day-old rat is similar to a six-month-old baby. Mandatory to generate the pre-clinical toxicity data in rodent species.

Dietary profile - similar to human DDI.

- 1. Dietary guidelines for Indians, A Manual, NIN, Hyderabad. (Page no-42)
- 2. Conversion profile (conversion factor of rat-0.018) [Paget.G.E. & Barnes.J.M. (1964) Evaluation of Drug Activities: Pharmocometrics Ed. Laurence.D.R & Bocharach.A.L., Vol.1. Academic Press, New York].
- 3. Sponsors Information.

Sub-chronic toxicity study - Leaf

Study Design: SD rats, 6 –8 weeks & 170 - 200 gms

Maximum Dietary intake: 100g / adult

S.No	Group Details	No. of animals /sex	Dietary intake g/rat#	Study Period [@]	Study parameters
1	Control	20(10♂+10 ♀)	NIN normal diet (NP)		Cage side observation (daily),
2	Varuna (NT)	20 (10♂+10 ♀)	0.4 + NP		Physical examination (twice a
3	EH2 (NT)	20 (10♂+10♀)	0.4 + NP		week),
4	Varuna Barnase	20 (10♂+10♀)	0.4 + NP	114 days	Recording of body weights,
5	EH2 Barstar	20 (10♂+10♀)	0.4 + NP	(Duration of Exposure-90	Neurological examination, Urine analysis qualitative,
6	DMH-11	20 (10 ♂+10♀)		days)	Biochemistry, Hematology, Necropsy and Histopathology of vital organs. Immunology: tier i & tier ii tests

^{*:} Maximum amount of Test material administered is 0.4g/200g (2g/kg B.Wt./day).

NP: 1.1g/rat standard NIN powder diet was mixed

NT - Non-transgenic; NP - Standard NIN powder diet

 \mathcal{J} =Male; \mathcal{L} =Female

 $^{^{\}odot}$: With 7 days Acclimatization + 3 days pre urine examination + 10 days Adaptation to Diet Regime + 90days exposure +2 days post urine examination +2 days for euthanization.

Sub-chronic toxicity study - Seed

Study Design: SD rats, 6 –8 weeks & 170 - 200 gms

Maximum Dietary intake (Human/adult): 0.53g / day

S.No	Group Details	No. of animals /sex	Dietary intake mg/ rat/day#	Study Period ⁺	Study parameters		
1	Control	20 (10♂+10♀)	NIN normal diet (ND)		Cage side observation (daily),		
2	Varuna (NT)	20 (10♂+10♀)	20 + NP		Physical examination (twice a		
3	EH-2 (NT)	20 (10♂+10♀)	20 + NP	119days (Duration of Exposure-90 days) weights, Neurological exantal analysis qualitative Biochemistry, Henri Necropsy and History	week), Recording of body weights.		
4	Varuna Barnase	20 (10♂+10♀)	20 + NP		Neurological examination, Urine analysis qualitative, Biochemistry, Hematology, Necropsy and Histopathology of vital rgans. Immunology: tier i & tier ii tests		
5	EH-2 Barstar	20 (10♂+10♀)	20 + NP				
6	DMH-11	20 (10♂+10♀)	20 + NP				

^{#:} Maximum amount of Test material administered is 20mg/200g (100mg/ kgB.Wt./day).

NP: 980mg/rat standard NIN powder diet was mixed

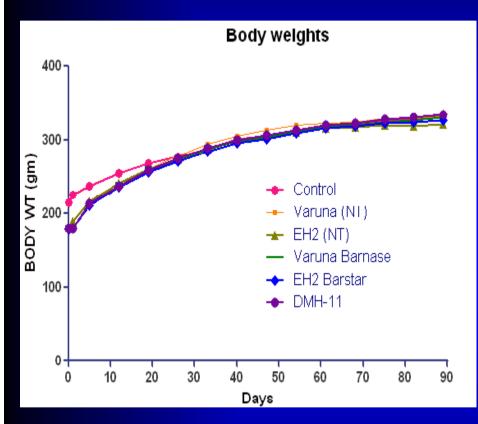
NT - Non-transgenic, ND - Normal diet

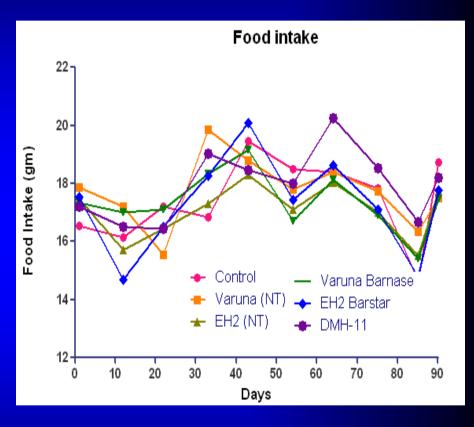
^{+:} With 15 days Acclimatization + 2 days pre urine examination + 9 days Adaptation to Diet Regime + 90days exposure + 1 day pre urine examination and 2 days for euthanization.

OBSERVATION DETAILS

Study Details	No. of animals	Parameters
Acute Toxicity study	All	 ✓ Cage side Observation (Daily) ✓ Recording of body weights (Twice a week) ✓ Physical Examination (Twice a week) ✓ Neurological Examination (Twice a week) ✓ Lethality (Daily)
Sub-Chronic study	AII	 ✓ Cage side observation (Daily), ✓ Physical Examination (Twice a week) ✓ Recording of body weights (Twice a week) ✓ Recording of Feed intake (Daily) ✓ Neurological Examination (Twice a week) ✓ Urine analysis qualitative (Before & after exposure to the test material) ✓ Biochemistry, Hematology, Necropsy and Histopathology of vital organs (End of the euthanization)

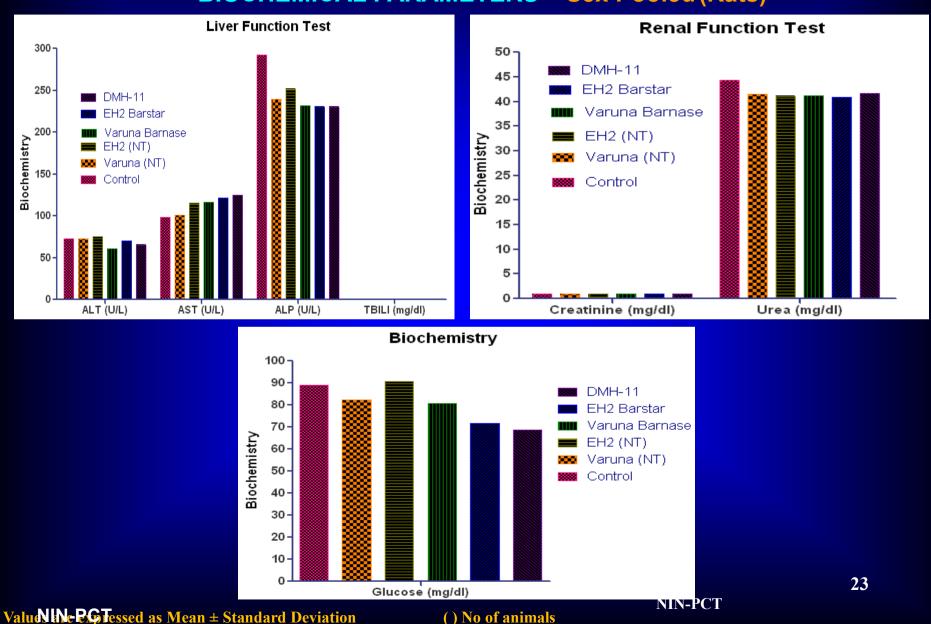
RESULTS

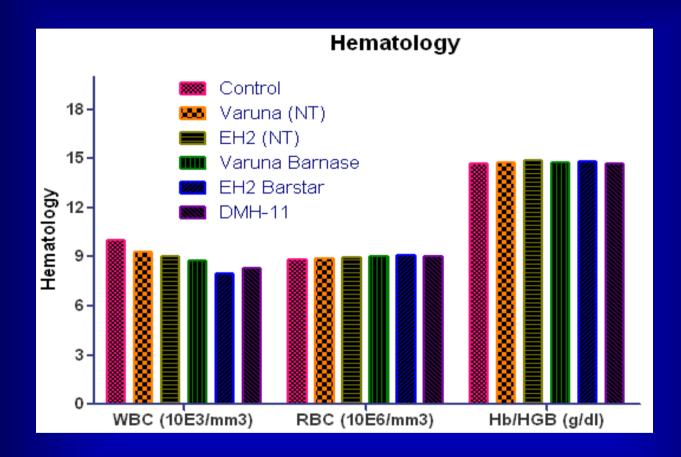

Compositional Analysis


The compositional analysis:
Includes macro, micro nutrients were substantially equivalent inspite of the significant changes which may be due to agro-climatic changes.

Acute Toxicity study (14days) Recombinant Bar, Barstar and Barnase proteins

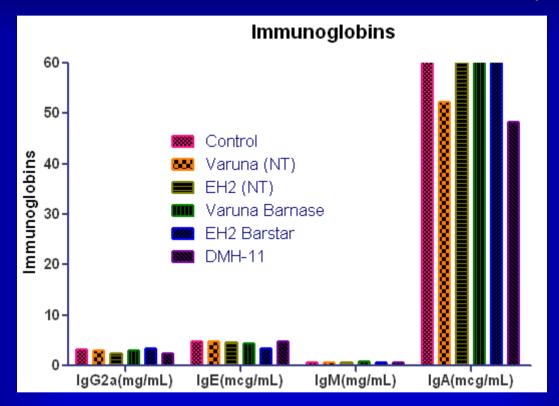
- ✓ No mortality in animals exposed to test protein.
- ✓ Gain in body weight, food intake was normal.


Sub chronic toxicity study of leaves from two events of Transgenic *B.juncea* Sex Pooled (Rats)

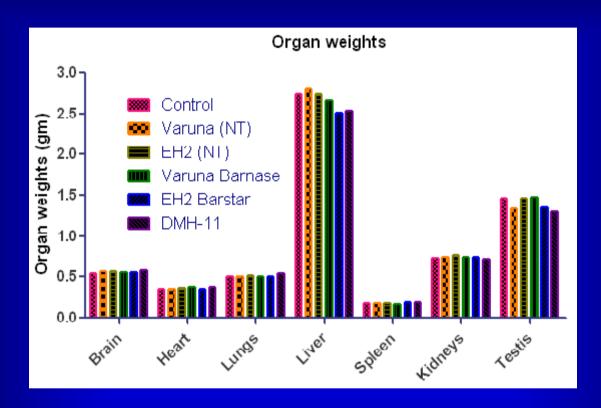


No significant difference in body weights, feed intake, and cage side activities.

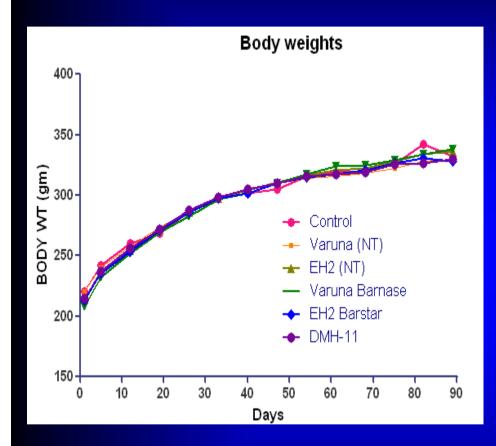
Sub chronic toxicity study of leaves from two events of Transgenic *B. juncea*BIOCHEMICAL PARAMETERS – Sex Pooled (Rats)

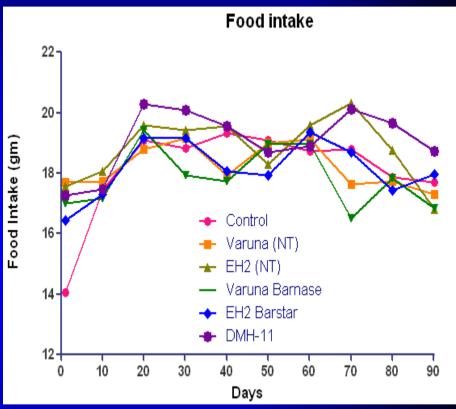


Sub chronic toxicity study of leaves from two events of Transgenic *B.juncea* HEMATOLOGY - Sex Pooled (Rats)

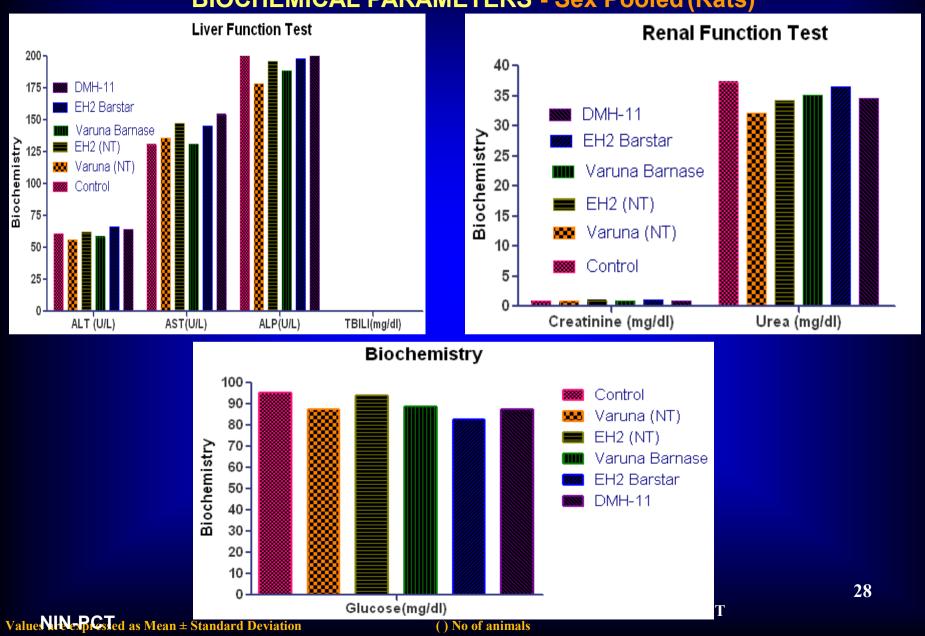

Hematology profile was within normal range.

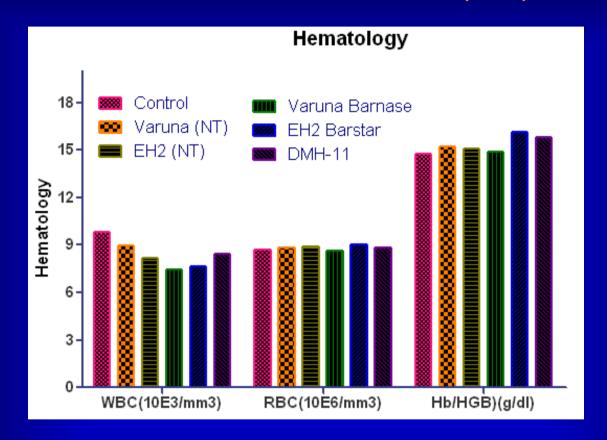
Sub chronic toxicity study of leaves from two events of Transgenic *B.juncea*IMMUNOLOGICAL PARAMETERS - Sex Pooled (Rats)


- Serum total IgG2a, IgE, IgM and IgA levels were not altered in animals fed with transgenic material and were comparable with those fed with non–transgenic material.
- No allergenicity symptoms see in the animals.


Sub chronic toxicity study of leaves from two events of Transgenic *B. juncea* ORGAN WEIGHTS - Sex Pooled (Rats)

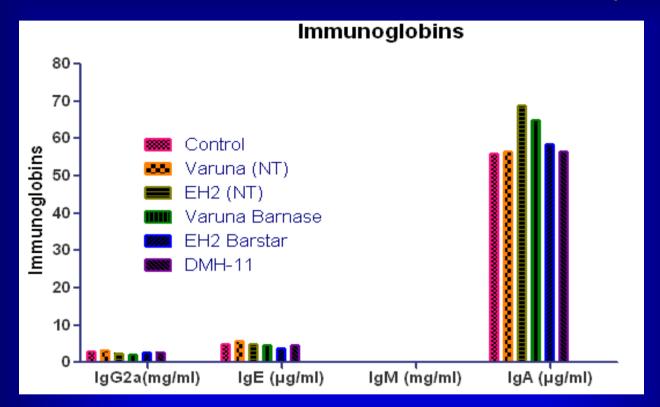
- No mortality in any group of animals which received transgenic or non-transgenic leaves of *B. juncea* at the dose of 0.4g/rat/day for 90 consecutive days.
- Histopathology evaluation was also unremarkable.


Sub chronic toxicity study of seeds from two events of Transgenic *B.juncea*Sex Pooled (Rats)

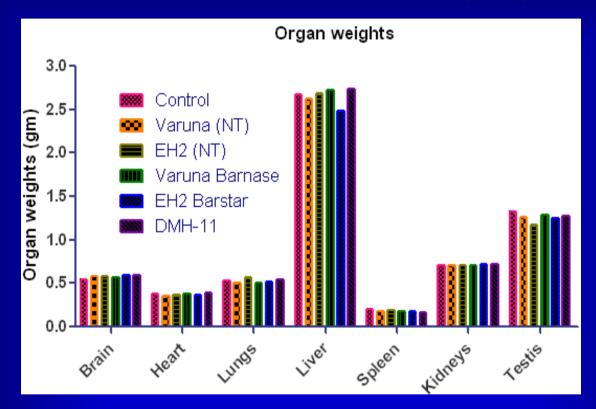


No abnormal findings with reference to gain in body weight, feed intake, cage side activity and clinical observations.

Sub chronic toxicity study of seeds from two events of Transgenic *B.juncea*BIOCHEMICAL PARAMETERS - Sex Pooled (Rats)



Sub chronic toxicity study of seeds from two events of Transgenic *B. juncea* HEMATOLOGY - Sex Pooled (Rats)


Hematological observations were within normal range.

Sub chronic toxicity study of seeds from two events of Transgenic *B.juncea* IMMUNOLOGICAL PARAMETERS - Sex Pooled (Rats)

- Serum total IgG2a, IgE, IgM and IgA levels were not altered with transgenic and were compared with non–transgenic B. juncea seed fed animals.
- No allergy symptoms seen in the test and control animals.

Sub chronic toxicity study of seeds from two events of Transgenic *B. juncea* ORGAN WEIGHTS - Sex Pooled (Rats)

- No pre-terminal deaths were observed in any group of animals in sub-chronic toxicity test which received test material.
- The histopathological result was also seen to be unremarkable.

Sub chronic toxicity study of Leaves & seeds from two events of Transgenic *B. juncea*HISTOPATHOLOGY - (Rats)

The histopathological result was

also seen to be unremarkable.

Study impression:

Leaf: The Daily Dietary Intake (DDI) of *B. juncea* (transgenic & non transgenic) leaves (0.4 g/day) for 90days by rats suggest safety profile as assessed by the following parameters*. DDI = 100 gm human intake

Seed: The Daily Dietary Intake (DDI) of B. juncea (transgenic & non transgenic) seeds (20mg/day) for 90days by rats suggest safety profile as assessed by the following parameters*. $DDI \equiv 0.53$ gm human intake

Physical examination (twice a week),
Recording of body weights,
Neurological examination,
Urine analysis qualitative, Biochemistry,
Hematology,
Necropsy and Histopathology of vital organs.
Immunology: tier i & tier ii tests

Leaf

Seed

? Preclinical predictors of Clinical Safety

OR

Opportunities For Improvement

150-COMPOUNDS DATA PREDICTS

RODENT TOXICOLOGY NON-RODENT TOXICOLOGY – 63%- HUMAN TOXICITIES **TOGETHER**

- 43%- HUMAN TOXICITIES

- 71%- HUMAN TOXICITIES

RAT'S AGE VERSUS HUMAN'S AGE: WHAT IS THE RELATIONSHIP?

ABCD Arq Bras Cir Dig Review Article 2012;25(1):

Rat's age in months	Human's age in years
6 months	18 years
12 months	30 years
18 months	45 years
24 months	60 years
30 months	75 years
36 months	90 years
42 months	105 years
45 months	113 years
48 months	120 years

Total lifespan:	13.8 rat days	
Nursing Period:	42.4 rat days	
Prepubescent	4.3 rat days	
Period:		- 1 human yaan
Adolescent Period:	10.5 rat days	= 1 human year
Adult Phase:	11.8 rat days	
Aged Phase:	17.1 rat days	
Average:	16.7 rat days	NIN-PCT

CAN WE FACE CHALLENGES

Bt Brinjal is safe, claims NIN

However, Activists Against GM Crops Need To Be Convinced

Hyderabad: Is Bt Brinial safe? The denonisation of BT crops got a push with he parliamentary committee on agriculure in its report submitted last month commenting that transgenics in food rops would be fraught with unknown onsequences. But the Hyderabad-based National Institute of Nutrition (NIN) of he Indian Council of Medical Research ICMR) says that Bt Brinial is safe.

A voluminous report on the laboratov experiments carried out on the safety f Bt Brinjal was submitted to the Review Committee on Genetic Manipulation RCGM) of the Department of Biotechnolgy, ministry of science and technology.

B Dinesh Kumar, deputy director, Food nd Drug Toxicology Research Centre, at he NIN told TOI that in every respect. Bt Brinial was found to be safe "What now eeds to be done is open field trials," Diesh Kumar said.

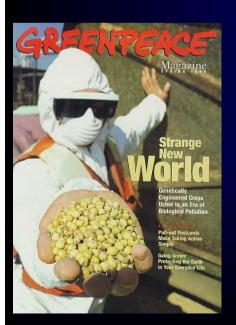
READY TO COOK

order to analyse the effects of Bt Brinial in human consumption, it first needs to be introduced in the market. The Genetic Engineering Approval Committee (GEAC) will then need to allow introducion of Bt Brinial, at least in a limited way so that the effects can be evaluated.

When Bt Brinjal was sought to be introduced in the market a few years ago, it However, the problem arises here. In ary 9, 2010, the ministry of environment

Brinial. In the absence of scientific consensus and opposition from state governments and others, the ministry decided to impose a moratorium on the commercial isation of Bt Brinial until all concerns expressed by the public, NGOs, scientists and the state government were addressed adequately.

Among those actively opposed to the introduction of Bt Brinjal is P M Bhargava. founder-director of the Centre for Cellular and Molecular Biology, Hyderabad. who was nominated by the Supreme Court to the GEAC.


Bhargava who had even argued against Bt Cotton told the parliamentary committee on agriculture that GM organisms could be introduced only after adequate testing was done.

The pre-clinical tests conducted at the NIN show that Bt Brinjal is safe but activists who are against genetically modified led to a controversy, However, on Febru- crops need to be convinced about the study and its results.

YES!

LET US PREPARE IDENTIFY THE INTERVENTION STRATIGIES

FACTS AND EXPERIENCE

- Human consume Minimum 0.1-1gm DNA / Diet /day
- Transgenic corn 0.0001% / Total DNA
- Meta analysis 147 original studies (soya, maize, cotton).
- Reduced pesticides by 37%, increased 22%, profits 68%.
- Multi generation studies (52 week feeding of soya 2007, 12 multi generation upto 5 generation) - No 'Evidence of Health Hazard'.
- Codex, WHO, European, US-FDA Uniform approach.
- Europe consumption of GM is existing but cultivation is restricted

Sterling Report - Seralini- 2012 Food Chem. Toxic. 4221-31).
Statistical Fishing trips — with 10 rats v/s 65 or more and 24 months?

- No proper controls
- Aged Animals
- No proper species

PUBLIC-PUBLIC & PRIVATE PARTNERSHIP PROGRAMS AT NIN

NATIONAL INSTITUTE OF NUTRITION (ICMR)

CENTRE FOR ADVANCED RESEARCH FOR PRE-CLINICAL TOXICOLOGY (ESTD. 1998)

Govt / Public Institutes

Drugs

- IISC, Bangalore
- IIL, Hyderabad
- AIIMS, New Delhi
- PGI, Chandigarh
- CCRAS, New Delhi
- DCGI, Gol
- CDRI, Luknow
- ANGRAU, Hyderabad
- DST

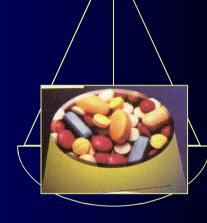
Foods

- NDDB, Anand
- ANGRAU, Hyderabad
- University of Delhi
- IICT, Hyderabad
- ICAR (NAIP)
- Tea Board of India

Private Organization

Drugs

- Shanta Biotech
- Dr. Reddy Labs
- Panacea
- Biological E lab
- Sipra Laboratory Pvt. Ltd.
- · Virchow biotech Pvt. Ltd.
- Asian Herbex Pvt. Ltd.
- Cadila Pharma Pvt. Ltd.
- ISSAR Pharma. Pvt. Ltd.
- · Stempeutics Pvt. Ltd.
- · Vanjan Biopharma Pvt. Ltd.
- · Zenotech Pvt. Ltd.
- · Crystalin research Pvt. Ltd.
- Sudhershan biotech
- Clonz biotechNIN-PCT
- · Bioviz Pvt. Ltd.


Foods

- Bejosheetal
- Mahyco Seeds
- JK Seeds
- Vasmo Foods
- Foods, Fats & Fertilizers Limited.
- Elan Pharma (India) Pvt. Ltd.

THE UNBEATABLES

THANK 'U'

HEALTH CANNOT BE BUILT AT PHARMACY COUNTER

ECONOMICAL, FRESH, TASTY, BETTER ABSORBED AND RETAINED. AVAILABLE IN NATURAL FORM AND RICH IN FIBER.

EXPENSIVE, SYNTHETIC, HAZARDOUS IF TAKEN IMPROPERLY / IN EXCESS PRODUCE UNWANTED SIDE EFFECTS.